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ABSTRACT
Genes of the Major Histocompatibility Complex (MHC) have become an important
marker for the investigation of adaptive genetic variation in vertebrates because of
their critical role in pathogen resistance. However, despite significant advances in the
last few years the characterization of MHC variation in non-model species still re-
mains a challenging task due to the redundancy and high variation of this gene com-
plex. Here we report the utility of a single pair of primers for the cross-amplification
of the third exon of MHC class I genes, which encodes the more polymorphic half
of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeri-
formes), a group especially challenging for MHC characterization due to the presence
of large and complex MHC multigene families. In our survey, although the primers
failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of
multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total
of 120 sequences. The 16 songbird species belong to 14 different families, primarily
within the Passerida, but also in the Corvida. Using a conservative approach based on
the analysis of cloned amplicons (n= 16) from each species, we found between 3 and
10 MHC sequences per individual. Each allele repertoire was highly divergent, with
the overall number of polymorphic sites per species ranging from 33 to 108 (out of
264 sites) and the average number of nucleotide differences between alleles ranging
from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolu-
tionary dynamics of exon 3 between songbirds and non-passerine birds. We found
compelling evidence of positive selection acting specifically upon peptide-binding
codons across birds, and we estimate the strength of diversifying selection in song-
birds to be about twice that in non-passerines. Analysis using comparative methods
suggest weaker evidence for a higher GC content in the 3rd codon position of exon
3 in non-passerine birds, a pattern that contrasts with among-clade GC patterns
found in other avian studies and may suggests different mutational mechanisms. Our
primers represent a useful tool for the characterization of functional and evolutionar-
ily relevant MHC variation across the hyperdiverse songbirds.
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INTRODUCTION
Genes of the Major Histocompatibility Complex (MHC) have become one of the most

sought-after molecular markers for the investigation of adaptive genetic variation in

vertebrates (e.g., Eizaguirre et al., 2012; Kamath & Getz, 2011; Kubinak et al., 2012; Radwan

et al., 2012). MHC genes are known to play a critical role during the development of

immunity against invading and potentially harmful pathogens. The cell-surface proteins

encoded by MHC genes bind and present short peptides (antigens) derived from the

processing of pathogens to lymphocyte T-cells, which triggers the adaptive branch of

the immune system (Iwasaki & Medzhitov, 2010). MHC genes are also thought to play

important roles in avian mate choice, although the conclusions of various studies have

been mixed, in part because of the complexity of this redundant multigene family (e.g.,

Strandh et al., 2012; Bollmer et al., 2012; Juola & Dearborn, 2011; Knafler et al., 2012; Ekblom

et al., 2004; Westerdahl, 2004).

MHC molecules have been traditionally classified into two major groups on the basis of

the origin of the antigens presented, although some degree of cross-presentation between

MHC classes is now currently assumed (e.g., Iwasaki & Medzhitov, 2010). Typically, MHC

class I molecules are monomeric proteins known to mostly present antigens derived

from intracellular pathogens (such as viruses) while MHC class II molecules are dimeric

proteins deploying antigens from extracellular pathogens such as bacteria (reviewed by

Sommer, 2005). Given the extraordinary richness and diversity of continuously evolving

pathogens in the environment, it is not surprising that the MHC harbors the most

polymorphic genes described thus far, with some loci, such as the human HLA-B locus,

possessing more than 2,000 alleles (de Bakker & Raychaudhuri, 2012). The maintenance of

such astonishing diversity is believed to be driven primarily by two main types of balancing

selection: heterozygote advantage, by which heterozygous individuals respond better to

infection than homozygous individuals, and frequency-dependent selection, by which

rare, low-frequency alleles might provide a selective advantage once pathogens have

found a way to elude the most common immune defense alleles in the population. The

evolutionary implications of MHC variation during the pathogen-host arms race have

been widely investigated across a large variety of taxa. As a result, MHC genes have been

of great interest in evolutionary biology and conservation genetics, as the capability of

species and populations to counter and adapt to novel pathogen menaces is believed to

be tightly linked to their degree of MHC variability (see Piertney & Oliver, 2006; Sommer,

2005; Spurgin et al., 2011), but see also (Gangoso et al., 2012; Radwan, Biedrzycka & Babik,

2010; Westerdahl et al., 2012).

Despite their great interest and potential for ecological immunology, the isolation and

characterization of MHC genes in non-model species still remains a challenging and
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Figure 1 Schematic representation of part of an MHC class I gene. Arrows indicate the location of the
primers used in this study. Both the coding sequences of exon 2 and exon 3 comprise the antigen-binding
region of MHC class I molecules. Exons are represented by boxes and the lines connecting boxes represent
introns.

time-consuming task. Until recently, the description of MHC genes in birds, particularly

for class I genes, was mostly restricted to galliform species and a very few species of

songbirds (reviewed by Hess & Edwards, 2002; Westerdahl, 2007). The last few years

have nevertheless witnessed great progress regarding the isolation and characterization

of MHC genes in non-model avian species, particularly across the avian MHC class II B

multigene family (e.g., Alcaide, Edwards & Negro, 2007; Burri et al., 2008; Canal et al.,

2010; Ekblom, Grahn & Hoglund, 2003; Li, Zhou & Chen, 2011; Silva & Edwards, 2009;

Strandh et al., 2011). Additionally, significant advances in genotyping protocols for

complex multigene families like the MHC (reviewed by Babik, 2010) have facilitated the

MHC studies in general, particularly in songbirds displaying large number of MHC gene

paralogs (e.g., Bollmer et al., 2010; Sepil et al., 2012; Zagalska-Neubauer et al., 2010). Studies

addressing MHC class I variability in birds are, however, less numerous or phylogenetically

diverse than those for MHC class II B genes (see recent examples in Cloutier, Mills & Baker

(2011), Promerova, Albrecht & Bryja (2009), Sepil et al. (2012) and Westerdahl (2004)) in

part almost certainly due to the lack of suitable primers for the cross-amplification of

candidate loci across species (see however Alcaide et al., 2009). Here, we describe the utility

of a single pair of primers for the cross-amplification of MHC class I loci across a large

avian order (Aves: Passeriformes), which includes more than half of known avian species,

in an effort to facilitate the study of MHC variation in non-model avian species. From the

two exons of MHC class I genes (exon 2 and 3) that comprise the peptide-binding region

(PBR), we focused on exon 3, in part because it has generally been found to be the more

polymorphic of the two (e.g., Cloutier, Mills & Baker, 2011). Putting our data together with

published class I sequences from non-passerine birds, we analyzed the macroevolution of

both rates of adaptive evolution and base compositional shifts as windows into the selective

and mutational pressures experienced by songbird class I genes.

MATERIALS AND METHODS
We used the QIAGEN–DNeasy Blood & Tissue Kit (Qiagen, CA, USA) to obtain genomic

DNA from blood samples collected in the field and tissue samples from the Museum of

Comparative Zoology at Harvard University (Cambridge, MA, USA; Animal protocol

number AEP 24-06) following the manufacturer’s protocol. The list of songbird species

investigated is shown in Table 1. We initially amplified the entire coding sequence

of exon 3 of MHC class I genes and a small part of the flanking intronic regions

(see Fig. 1) in two house finches (Haemorhous mexicanus) and two Eastern Bluebirds
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Table 1 Amplification success and genetic variability within each of the 16 oscine songbird and two suboscine species here investigated. The
table shows the putative number of functional alleles per species (Na; the number of putative pseudogene sequences, if any, is given in parentheses),
the overall number of polymorphic sites per allele repertoire (S), average nucleotide diversity (π) and average number of nucleotide differences
(k) among the sequences isolated from the same species. This table also shows the ratio (ω) between non-synonymous (dn) and synonymous (ds)

substitution rates for those codons presumably comprising (PBR) and non-comprising (non-PBR) the peptide binding region of the MHC class
I molecule (see text for details). Sample sizes are 1 for all species except for the Eastern Bluebird and house finch, for which n = 2. The accession
numbers for the specimens from the Museum of Comparative Zoology (MCZ) ornithology collection from which DNA was isolated are given. n/a,
not accessioned. –, no amplification.

Latin name Common name Family MCZ no. Na S π K ω = dn/ds
PBR

ω = dn/ds
non-PBR

Passer domesticus House sparrow Passeridae 337599 8 56 0.1 25.86 3.69 0.53

Cardinalis cardinalis Northern cardinal Cardinalidae 337661 7 68 0.124 32.9 3.08 0.45

Thraupis episcopus Blue-grey tanager Thraupidae 337677 8 (3) 103 0.16 41.82 4.16 0.74

Bombycilla cedrorum Cedar waxwing Bombycillidae 337636 9 52 0.086 22.7 1.02 0.31

Agelaius phoeniceus Red-winged blackbird Icteridae 337415 8 63 0.105 27.5 6.83 0.79

Sturnus vulgaris European starling Sturnidae 337556 9 108 0.162 42.44 2.46 0.58

Thryothorus thoracicus Stripe-breasted wren Troglodytidae 337696 6 (3) 56 0.107 28.47 7.12 0.72

Turdus migratorius American robin Turdidae 337189 3 (3) 56 0.145 33.8 1.89 0.69

Geothlypis trichas Common yellowthroat Parulidae 337642 5 63 0.133 34.8 3.72 0.47

Dumetella carolinensis Gray catbird Mimidae 337601 5 66 0.129 33.7 1.56 0.65

Passerina cyanea Indigo bunting Cardinalidae 337535 10 88 0.137 35.78 2.79 0.45

Polioptila plumbea Tropical Gnatcatcher Polioptilidae 337547 6 33 0.056 14.67 0.21/0.00 1.07

Vireo olivaceus Red-eyed vireo Vireonideae 337166 6 92 0.165 43.67 3.53 0.76

Sitta canadensis Red-breasted nuthatch Sittidae 337181 6 34 0.057 15 0.13/0.00 0.63

Sialia sialis Eastern Bluebird Turdidae n/a 13 80 0.129 33.8 0.91 0.40

Haemorhous mexicanus House finch Fringillidae n/a 11 85 0.149 38.8 5.03 0.65

Sayornis phoebe Eastern Phoebe Tyrannidae 337162 – – – – – –

Manacus candei White-Collared Manakin Pipridae 348105 – – – – – –

(Sialia sialis) using primers HN34 (5′-CCATGGGTCTCTGTGGGTA-3′) and HN45

(5′-CCATGGAATTCCCACAGGAA-3′) from Westerdahl et al. (2004). Although these

primers were originally designed for the isolation of MHC class I loci in great reed

warblers (Acrocephalus arundinaceus) they have proven successful in the isolation of

MHC class I sequences in other passerine species (e.g., Promerova, Albrecht & Bryja, 2009;

Sepil et al., 2012). PCR amplification was carried out using a PTC-100 Programmable

Thermal Controller (MJ research, MA, USA) in a final volume of 25 µl containing

1 unit of EconoTaq DNA polymerase (Lucigen Corporation, Middleton, WI, USA), 1×

PCR buffer (Lucigen), 1 mM MgCl2, 10 pmoles of each primer, 0.2 mM of each dNTP,

10 µg of BSA, 5% DMSO, and approximately 10–30 ng of DNA. The cycling protocol

consisted of an initial denaturation step of 95◦during 4 min, followed by 35 cycles of

95◦C for 45 s, 55◦C for 45 s and 72◦C for 45 s plus a final extension step of 72◦C during

4 min. After visualization of PCR products in 1% agarose gels stained with SYBR safe

(Invitrogen, CA, USA) we cloned fragments using the StrataClone PCR cloning kit

(Agilent Technologies, Inc., CA, USA) and inserts of the expected size (around 350 bp)

were re-amplified using M13 primers, purified with ExoSAP-IT reagent (Affymetrix, CA,
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USA) and sequenced with M13 primers and BigDye 3.1 reagents (Applied Biosystems,

CA, USA) supplemented with BDX64 buffer (MCLAB, CA, USA) according to the

manufacturer’s protocols. Sixteen positive clones from each of the two birds were selected

for sequencing. Fluorescently labeled fragments were resolved into an Applied Biosystems

3730 xl DNA Analyzer (Applied Biosystems, CA, USA). The sequences obtained from

house finches and Eastern Bluebirds were aligned in BioEdit ver 7.0 (Hall, 1999) and

Geneious R6 (Drummond et al., 2011). New degenerate primers sitting on the boundaries

of exon 3 were designed following the alignment of house finch and Bluebirds MHC

class I sequences. These primers were MhcPasCI-FW 5′-CSCSCAGGTCTSCACAC-3′ and

MhcPASCI-RV 5′-CWCARKAATTCTGYTCHCACC-3′ (Fig. 1). Primer MhcPasCI-FW

is similar in its sequence to the primers HN36 and HN38 designed by Westerdahl et al.

(2004) but our primer is more degenerated and 3 nucleotides shorter in the 3′ end (the

last nine nucleotides of the primer sit into the coding sequence of exon 3). The utility of

this primer pair was tested in each of the 16 songbird species from 14 different taxonomic

families, as well as two suboscine passerine species, a manakin (Pipiridae) and a New

World Flycatcher (Tyrranidae). The PCR protocol used was the same as that described

above for the primer pair HN34/HN45. Likewise, PCR products were cloned and sixteen

positive bands per species or individual sequenced with M13 primers as described above.

Sequences were again edited and aligned in BioEdit and Geneious R6 (Drummond et al.,

2011). We then searched for different, putative alleles within each individual. Given the low

number of clones screened we only considered as different, presumably functional alleles,

those DNA sequences differing in at least three nucleotide positions and not showing

stop codons or disrupted reading frames. These criteria will minimize the impact of PCR

and sequencing artifacts in our allele repertoire but may also underestimate the number

of alleles per individual (e.g., when true alleles differed in just one nucleotide positions

but they are not found in more than one clone each). All sequences fitting these criteria

have been deposited into the GenBank public domain (see results). Putative pseudogenes

and those sequences suspected to be mosaic or chimeric sequences were discarded. In a

study focused on population genetics, the genotyping of MHC loci across large complex

multigene families requires more stringent criteria and protocols to define true alleles than

those described in this study (e.g., Lenz & Becker, 2008; Sepil et al., 2012). Here our purpose

was to produce a first glimpse of the utility of our primers and broad macroevolutionary

patterns, but future studies using our primers should more thoroughly analyze a MHC

variability in particular species with more stringent quality checks.

The MHC class I sequences here isolated plus additional exon 3 sequences from

non-passerine species downloaded from the public domain (see File S1) were aligned

using the Muscle algorithm (Edgar, 2004) as implemented in TranslatorX, a codon-based

alignment algorithm (Abascal, Zardoya & Telford, 2010), using default options. We

built a phylogenetic tree using the Neighbour-joining method (Saitou & Nei, 1987) as

implemented in Geneious R6 (Drummond et al., 2011) using an optimal substitution

model (Tamura-Nei model + gamma= 0.78 in this case) from ModelTest v. 3.5 (Posada &

Crandall, 1998). An MHC class I exon 3 sequence of the Balsas armed lizard (Ctenosaura
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clarkil; GenBank Acc. No. EU839667) was used as outgroup. Branch support was evaluated

by 1,000 bootstrap replicates. We verified that the major branches in this tree, including

the strongly supported branches leading to the songbird sequences and to several of the

major clades of sequences were present when using the maximum likelihood method as

implemented in Phyml v. 3.0, using SPR tree searching and an HKY model of substitution

with estimated variation in rates among sites (Guindon et al., 2010). The phylogenetic

relationships among songbird MHC class I sequences were also visualized through

a neigbor-net network built in Splitstree 4.0 (Huson & Bryant, 2006) according to

Kimura-2-parameter distances. We tested for a significant clustering of MHC sequences by

species using a permutation test in MacClade in which we compared the observed number

of parsimony changes in a character coded as species designation on the best tree with

the distribution observed on 1000 random trees. Non-synonymous (dn) and synonymous

substitution rates (ds) were calculated in MEGA ver 5.0 (Tamura et al., 2011) according

to the modified Nei-Gojorobi method with Jukes-Cantor correction and 1,000 bootstrap

replicates for variance estimation. Two analyses were carried out, one including only

putative PBR codons and another including the remaining codons. Codons were labeled as

PBR or non-PBR in accordance with previously documented patterns of positive selection

across the avian MHC class I (see Balakrishnan et al., 2010; Alcaide et al., 2009), which

also suggested large overlapping between the PBR of the human MHC class I molecule

(Björkman et al., 1987; Saper, Bjorkman & Wiley, 1991) and homologous sites in birds.

The exon 3 codons classified as PBR-codons were 5, 7, 8, 9, 23, 25, 38, 60, 61, 62, 65, 66,

68 and 73.

We carried out an independent analysis of codon substitution using the codeml software

in the PAML package v.4.4 (Yang, 2007). Specifically we used the branch-site and clade tests

(models A, C and D, see Bielawski & Yang, 2004; Yang, Wong & Nielsen, 2005), focusing

on the branch leading to songbirds (model A), or the entire clade of songbirds (models

C and D). These models differ in their structure as well as in the assumptions about the

values that specific parameters can take. For example, in model A, the ‘background’ branch

cannot have any sites with values of ω greater than 1, and the test focuses on a specific

branch, in our case the single branch leading to the passerine sequences. By contrast, in

both models C and D, one class of sites (ω0) is constrained to fall below 1. But other classes

of sites (ω1) are either constrained to equal 1 (model C) or allowed to take on any positive

value (model D). Models C and D both test average rates across clades, rather than specific

branches, but they differ in the statistical models assumed, with model C employing the

more accurate Bayes-Empirical-Bayes (BEB) method, rather than the naı̈ve empirical bayes

(NEB) approach (Bielawski & Yang, 2004; Yang, Wong & Nielsen, 2005). However all of

these methods allowed us to assess those PBR codons experiencing adaptive evolution

without identifying them a priori.

We also noticed pronounced variation in GC content of the avian MHC class I

sequences across various groups, particularly in the 3rd position of codons. Given that

base compositional variation is a consequence of a variety of molecular forces, such as

recombination, gene conversion and selection, this base compositional variation could be
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important for understanding the evolutionary forces operating on avian MHC class I genes

(Duret & Galtier, 2009). To quantify and better understand the dynamics of GC-content

in avian MHC class I genes, we analyzed the phylogenetic signal in GC content using a

comparative method (see Thomas, Meiri & Phillimore, 2009) that is well suited to testing

for the significance of means and variances of continuous characters among clades under a

Brownian motion model. Base compositional evolution in DNA sequences has often been

challenging to analyze because standard phylogenetics packages that allow this calculation

often perform standard, non-phylogenetic tests of significance, which are inappropriate

(e.g., PAUP*; Swofford, 2002). The likelihood method of Thomas, Meiri & Phillimore (2009)

(see also Thomas, Freckleton & Szekely, 2006) is well suited for the analysis of diversification

of continuous phenotypic or genotypic traits. This approach is able to distinguish between

two possible causes of differences in means between groups: differences in rate of trait

evolution (as revealed by the Brownian variance of the trait) between groups without there

being differences in means, and true differences in means between groups, with or without

differences in rates of evolution. For these calculations we removed the outgroup and used

an ultrametricized tree using the penalized likelihood method of Sanderson (2002), using a

value of 2 for the smoothing parameter λ. The Brownian motion analysis was implemented

in the ‘motmot’ package in R, version 1.0.1 (Thomas & Freckleton, 2012).

RESULTS
Versatile primers for songbirds: The primer pair MHCPasCI-Fw and MHCPasCI-Rv

successfully amplified multiple MHC class I sequences in all 16 songbird species

tested in the present study (Table 1, GenBank Acc. Nos. KC585518-KC585637, see also File

S2). The number of putatively functional MHC alleles ranged from 3 to 10 per individual.

This is surely an underestimate given the low number of clones screened per individual

and the possibility of confounding true alleles differing by less than 3 substitutions

with PCR or sequencing artifacts. However, genetic diversity within the allele repertoire

isolated from the same individual or species was high. The number of variable sites ranged

from 33 to 108 (out of 264) and the average number of nucleotide differences between

putative alleles or loci within species ranged from 14.67 in the tropical gnatcatcher to

43.67 in the European Starling (Table 1). Non-synonymous substitution rates commonly

exceeded synonymous substitution rates at those codons presumably comprising the

peptide binding, while the contrary was the general pattern outside PBR codons (Table 1).

This finding is consistent with our having amplified functional MHC genes subjected to

positive, diversifying selection. The co-amplification of putative pseudogenes, on the other

hand, seemed to be common in the following species: Blue-grey Tanager, Stripe-breasted

Wren and American Robin, while in the remaining species this phenomenon appeared to

be rare (Table 1). An alignment of the selected and presumably functional MHC class I

sequences is included as Supplemental Information (File S1) and on Dryad and Treebase.

Four out of the five MHC class I alleles that we isolated in the Common Yellowthroat (an

individual captured in Massachusetts, U.S.) are identical to some of the alleles previously

isolated in the same species (from a Wisconsin population, U.S.) by Bollmer et al. (2012)
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through a pyrosequencing approach (GenBank Acc. Nos. AFP1784, AFP17830, AFP17847

and AFP17865, see Files S1 and S2). In addition, four out of the eight alleles that we isolated

in the house sparrow differed in no more than three amino acid positions from other

alleles previously isolated in this species by Bonneaud et al. (2004) and Loiseau et al. (2008)

(GenBank Acc. Nos. AAQ22383, ABO15711). These similarities lend confidence to our

results and suggest we have in some cases amplified the same or very similar loci. The

absence of any identical alleles in house sparrows is likely due to the different geographic

origin of the house sparrow individual here investigated (Massachussets, U.S.) versus

the house sparrows individuals genotyped in the studies by Bonneaud et al. (2004) and

Loiseau et al. (2008) (Europe, see for instance Alcaide et al., 2008 for marked genetic

structuring at the MHC). After repeated attempts at amplification, we nonetheless found

out that our primers do not amplify a homologous MHC class I fragment from the two

suboscine species that we investigated, a manakin (Pipiridae) and a New World Flycatcher

(Tyrranidae) (Table 1).

Phylogenetic relationships: The phylogenetic relationships among the MHC class I

sequences isolated in this study plus additional exon 3 sequences isolated in other avian

species are depicted in Fig. 2. The resulting tree defined two main clades, one including

all songbirds and the other encompassing the rest of bird species, including chicken,

Anseriformes, diurnal birds of prey, petrels, seagulls, falcons and kestrels. We also found

that there was strong support for clustering of sequences for various higher clades, such as

Anseriformes (Mallard and goose in our data set), Falcons/Kestrels, diurnal birds of prey +

gull + petrel, and chicken. The lack of complete clustering according to species for many of

the 17 nonpasserine or 16 passerine species is not surprising given the expected impact of

trans-species polymorphisms across the MHC in general (e.g., van Oosterhout, 2009) and

the complex nature of the songbird MHC class I multigene family in terms of paralogs.

Still, using the permutation test, we found that the observed number of parsimony

transitions of a character (x) labeled as species designation in both songbirds (x = 33) and

non-passerines (x = 18) was significantly lower than that observed among 1000 random

trees (passerines, range x = 99–115 steps; non-passerines, range x = 62–76; both groups,

P< 0.001), suggesting significant clustering by species. For example, the 15 sequences from

the two tit species from the database all clustered together (although not by species), as did

the 6 gnatcatcher, 6 vireo and 9 waxwing sequences (see Fig. S1 for a more detailed tree,

see also Fig. 3). On the other hand, the neighbor-net depicted in Fig. 3 shows a complex

network with multiple reticulate events both within and among species, particularly in

a cluster of blackbird, tanager and yellowthroat sequences. Evidence for recombination

using the SplitsTree Phi test was not significant (p = 0.09) across the entire songbird

MHC class I data set, although this test is ideally applied to a large set of MHC sequences

isolated from the same or closely related species. Qualitatively, our results suggest a role for

recombination during the evolution of the MHC class I multigene family in songbirds.

Greater selection intensity in the PBR of songbird MHC class I: We analyzed patterns of

nucleotide substitution using MEGA and PAML. When estimating ω using the modified
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Figure 2 Neighbor-joining tree of the passerine MHC class I sequences (exon 3) here isolated plus
additional exon 3 sequences isolated in other avian species. Bootstrap support for the main branches of
the tree are indicated. A more detailed depiction of this tree is provided in Fig. S1.

Figure 3 Neighbor-net network of the MHC class I sequences (exon 3, N = 120) isolated from the 16
songbird species investigated in this study. Only the main clusters of sequences are labeled for simplicity.
Those species whose sequences fall into a single cluster are indicated by asterisks.
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Table 2 Estimates of non-synonymous (dn) and synonymous (ds) substitution rates and their ratio
for codons chosen a priori to comprise (PBR) and not comprise (non-PBR) the peptide binding region
of the MHC class I molecule (MEGA) and for codon classes estimated from the data (PAML). For each
comparison estimates for songbirds (oscine passerines) and non-passerines are provided (see also Fig. 2).
For the MEGA estimates, standard errors based on 1,000 bootstrap replicates are given. For the PAML
estimates, the results of two models (C and D) are given. In models C and D, ω0 is constrained to fall
below 1, whereas in model C, ω1 must equal 1.

Site class Parametera Proportion
of sites

Clade

Songbirds Non-Passeriformes

MEGA

PBR dn 0.791 0.620± 0.157 0.474± 0.129

ds 0.209 0.163± 0.074 0.246± 0.111

ω = dn/ds 3.80 1.92

non-PBR dn 0.769 0.144± 0.017 0.135± 0.022

ds 0.231 0.255± 0.041 0.284± 0.047

ω = dn/ds 0.56 0.48

All codons dn 0.772 0.176± 0.025 0.160± 0.024

ds 0.228 0.245± 0.037 0.278± 0.044

ω = dn/ds 0.72 0.58

PAML

Model A 0 0< ω0 < 1 0.546 0.230 0.230

1 ω1 = 1 0.301 1.000 1.000

2a ω2 ≥ 1,0< ω0 < 1 0.991 2.479 0.230

2b ω2 ≥ 1,ω1 = 1 0.055 2.479 1.000

Model C 0 0< ω0 < 1 0.380 0.111 0.111

1 ω1 = 1 0.120 1.000 1.000

2 ω2 0.500 0.476 0.421

Model D 0 0< ω0 < 1 0.381 0.141 0.141

1 ω1 0.098 2.388 2.388

2 ω2 0.521 2.388 0.633

Notes.
a For the PAML models, when two parameters are listed in the column, the first parameter in the cell refers to the songbird

branch (model A) or clade (model C or D), and the second refers to the non-passerine branch or clade.

Nei & Gojobori (1986)method in MEGA, we found evidence for rates of diversifying

selection acting on PBR codons in songbirds about twice as great as those found in

non-passerine birds (Table 2). For non-PBR codons, the differences in ω between clades

are less pronounced (Table 2). Rates of synonymous substitution (ds) appear to be slightly

higher in non-passerine birds, both in and outside the PBR, suggesting that it is not solely

substitution rates or shorter generation time that is driving the difference inω between the

groups. We found similar patterns when the data were analyzed using PAML. We found

clear evidence for adaptive evolution in songbirds, as evidenced by the lower likelihood

score for models that included adaptive evolution compared to those that did not (model 1

vs. 2: 2 ∗ difference in lnL = 291.7; LRT, df = 2, p < 0.0001); model 7 vs. 8, 2 ∗ difference

in lnL = 299.08, df = 2, p < 0.0001). We next examined branch-site and clade models.

In model A, the estimated value of ω for class 2a sites (0 < ω0 < 1 background vs. ω2 ≥ 1
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Figure 4 Distribution of positively selected sites in exon 3 of songbird class I genes as estimated by
PAML (model 2). Red columns indicate the class of sites with a high probability of ω > 1. In this model
ω1 = 0.25 and applies to ∼59.3% of the codons (blue); ω2 = 1 at ∼28.2% of the sites (green); and
ω3 = 3.53 at ∼12.6% of the sites (red). Asterisks indicate codons assumed to comprise the avian PBR
in the MEGA analysis and crosses indicate PBR residues in the human HLA-A2 molecule (Björkman et
al., 1987; Saper, Bjorkman & Wiley, 1991).

foreground) was about 10 times higher in songbirds (ω2) than in non-passerines (ω0). For

class 2b sites (ω1 = 1 background vs.ω2 = 1 foreground), rates of adaptive evolution were

about four times higher in songbirds (ω2) than in non-passerines (ω1). Model A identified

11 codons with high probabilities of adaptive evolution (see Fig. 4), whether with uniform

rates (model 2) or a gamma distribution of rates (model 8) among sites was assumed.

This set of codons (numbers 5, 7, 9, 23, 25, 48, 62, 65, 66, 73 and 83) shared nine codons

(5, 7, 9, 23, 25, 62, 65, 66 and 73) with those designated in the MEGA analysis. Codons

48 and 83 were subjected to positive selection according to PAML analysis but were not

labeled as PBR codons during MEGA analysis. On the other hand, codons 9, 60, 61 and 68,

which were labeled as PBR codons in the MEGA analysis, are in close proximity (within

one or two codons) to one of the positively selected codons revealed by PAML analyses. In

model D, passerines exhibited a level of diversifying selection (ω2) again about four times

higher in passerines than in non-passerines. Model C was the only model that suggested an

equivalence of diversifying selection in passerines and non-passerines, with the value of site

class 2 (freely varyingω2) being approximately equal in passerines and non-passerines.

Shifts in GC content between songbirds and non-passerines: We noticed conspicuous

differences in GC content of our exon 3 sequences between songbirds and non-passerines,

particularly for the 3rd codon position (GC3) (Fig. 5). By a standard statistical test, the

mean GC3 content differed highly significantly between songbirds and non-passerines

(Welch’s two sample t-test, t = 10.3108, df = 223, p-value <2.2e−16; mean passerines

69.77%, mean non-passerines 77.58%), although the GC content overall codon positions

did not (t = −1.4671, df = 223, p-value = 0.1438; mean passerines 57.23%, mean

non-passerines 56.71%). We employed the Brownian motion model of Thomas, Meiri &

Phillimore (2009) to study the evolution of base composition in our class I sequences while

taking phylogeny into account. Surprisingly, using an ultrametricized tree, we found that

a model in which GC3 was assumed the same rates of evolution and same mean between
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Figure 5 Base compositional variation in the 3rd codon position of avian class I MHC genes (exon
3). Clades are indicated according to the key provided. The topology depicted here is a neighbor-joining
tree as described in Methods, however, the branch lengths have been ultrametricized as described in
Methods to conduct the comparative tests. The branch leading to songbirds is indicated. The topology
of this tree differs slightly from that in Fig. 2 because this is a simple neighbor-joining tree, rather than a
bootstrap consensus of trees as in Fig. 2.

the two clades was the simplest explanation of the data as assessed by its having the lowest

value for the Akaike Information Criterion (AIC; Table 3). Across all the tests, we found

no evidence for differences in rates of evolution of GC content in the two clades. However,

we reasoned that the long branch leading to the songbird sequences could be causing this

lack of significance, because we would expect greater differences between clades and greater
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Table 3 Tests of differences in mean base composition and rates of base compositional change in MHC classs I genes (exon 3) between songbirds
and non-passerines using the likelihood model of Thomas, Meiri & Phillimore (2009). The cells in bold and underlined indicate the model and
AIC value that best explains the data under two sets of branch lengths leading to the songbird sequences.

Proportion GC – all sites Proportion GC – 3rd positions

Model Length of
songbird
branch

AIC Brownian
variance

Relative rates
(song-
birds non-
passerines)

Estimated
means
(song-
birds, non-
passerines)

AIC Brownian
variance

Relative
rates
(songbirds,
non-
passerines)

Estimated
means
(songbirds,
non-passerines)

Same mean,
same rates

Full 712.42 22.55 1, 1 56.01 993.54 78.67 1, 1 72.28

Different
mean, same
rates

Full 714.24 22.63 1, 1 55.79, 56.79 993.75 78.39 1, 1 73.55, 67.84

Same mean,
Different
rates

Full 714.35 22.08 1.05, 1 56.02 995.43 80.68 0.94, 1 72.33

Different
mean,
different rates

Full 716.16 22.16 1.05, 1 55.79, 56.79 995.65 80.27 0.94, 1 73.55, 67.84

Same mean,
same rates

Half 712.03 22.56 1, 1 56.11 993.88 78.96 1, 1 71.69

Different
mean, same
rates

Half 713.76 22.63 1, 1 55.79, 56.79 993.27 78.39 1, 1 73.55, 67.84

Same mean,
different rates

Half 713.96 22.10 1.05, 1 56.12 995.78 80.89 0.94, 1 71.76

Different
mean,
different rates

Half 715.69 22.17 1.05, 1 55.76, 56.79 995.17 80.32 0.94, 1 73.55, 67.84

total Brownian variance with a longer time period separating the two clades in question.

We found this to be the case; the significance of a difference in GC3 between songbirds and

non-passerines was dependent on the length of the branch leading to the passerine clade.

If this branch was cut in half, a model in which the two clades had different means was

superior to a model in which they had the same means, not only when rates of evolution

were assumed to be the same in the two clades, but even when rates of evolution were

assumed to be different, in which case different rates could possibly explain some of the

differences in mean (Table 3). Thus the degree to which songbird MHC class I 3rd positions

are deemed to differ in their GC content depended on the length of the branch leading

to songbirds. This uncertainty has important implications for the analysis of continuous

traits in birds.

DISCUSSION
The complexity of the songbird MHC class I multigene family documented here and

in previous studies (e.g., Westerdahl, 2004; Sepil et al., 2012; Bollmer et al., 2012) makes

surveying MHC variation through traditional cloning techniques challenging. Along with
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its ability to cross-amplify multiple MHC class I loci across a wide diversity of species, an

additional advantage of our primer pair is the small size of the PCR amplicons (∼300 bp)

that still covers almost the entire coding region of one of the exons comprising the class

I PBR – short enough to be amenable to next-generation sequencing but longer than

most class I sequences currently available in the databases. These properties make our

primers especially suitable for cost-effective pyrosequencing approaches for genotyping

large numbers of individuals (see review by Babik, 2010).

The high number of divergent sequences isolated from single individuals in our study,

despite the low number of clones that we screened per individual, also suggests that

our survey was not preferentialy amplifying certain alleles or loci to an extreme degree.

Equal amplification of alleles is of great utility when attempting to discriminate between

presumably true alleles and those emerging from PCR and/or sequencing artifacts. The

exon-intron boundaries where our primers sit are expected to be relatively well conserved

within and among related species because their critical role in the process of intron

splicing. This expectation would be consistent with the successful cross-amplification

and the retrieval of large allele repertoires with our primers. That said, we cannot rule out

the existence of polymorphisms in the priming sites that cause poor or non-amplification

of certain alleles/loci. Even so, the sequences obtained with our primers are still useful,

especially if used in conjunction with previously published primers in other MHC class I

regions (e.g., Westerdahl et al., 2004; Sepil et al., 2012), which together permit evaluation of

potential PCR biases in particular taxa.

Our primers successfully amplified a large variety of species of oscine passerines,

including representatives from the infraorders Passerida and Corvida (see Barker,

Barrowclough & Groth, 2002; Barker et al., 2004 for more details about phylogenetic

relationships among passerines). Within Passerida we amplified several members of

the core Passeroidea and Muscicapoidea, as well as taxa outside these clades, such as

waxwings (Bombycillidae), New world Warblers (Parulidae), nuthatches (Sittidae) and

wrens (Troglodytidae). The Red-eyed Vireo (Vireonidae) is nevertheless the unique

representative of the clade Corvida in the present study, but because of its basal position

within Corvida we predict that these primers should work in other Corvida, such as crows

and bowerbirds. Our primers did not amplify, the homologous region from two suboscine

passerine species, a manakin (Pipridae) and a New World Flycatcher (Tyrranidae). Thus

these primers appear to be songbird-specific, rather than passerine-specific.

This songbird MHC class I data set, when combined with class I sequences from

non-passerines, afforded us a macroevolutionary view of MHC class I evolution in

birds. We found consistent evidence for stronger adaptive evolution in songbird than in

non-passerine class I sequences. The analysis using MEGA, and two of the three PAML

models we used gave strong evidence for a higher ratio of nonsynonymous to synonymous

(ω) substitutions in the PBR, whether or not PBR codons were chosen a priori. Paradox-

ically, the only model that did not suggest higher adaptive evolution in the songbird PBR

was model C of PAML, which suggested that the intensity of selection in songbirds and
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non-passerines was approximately equal. Overall we take these results as strong evidence

that songbirds do exhibit a higher rate of adaptive evolution than non-passerines.

This higher intensity of adaptive evolution in songbirds could be part of a general

syndrome of songbird evolution driven by their generally small body size, rapid rate of

evolution, diversity of habitat occupancy and hence higher encounter rate with parasites.

In many studies of molecular evolution, passerines exhibit higher rates of evolution than

do non-passerines. This pattern has been attributed to several factors, especially the

generation time effect, with passerines having a larger number of generations per unit

time than non-passerines. Nam et al. (2010) found several predictors of synonymous

and nonsynonymous substitution rates in birds. For example, contrary to the predictions

of the Hill-Robertson effect, which predicts a positive relationship between the rate of

nonsynonymous substitution and chromosome size (due to the increased efficiency of

purging presumably deleterious nonsynonymous substitutions on highly recombining

small chromosomes), they found a weak negative relationship betweenω and chromosome

size in chickens and zebra finches. The MHC class I region is on a microchromosome

in chickens, and the single functional class I gene in zebra finches is on the smallest

macrochromosome, chromosome 16 (Ekblom et al., 2011), which is still larger than a

microchromosome. Thus although MHC genes in both chickens and songbirds may be on

small chromosomes, their results do not clearly predict which lineage should show higher

rates, or indeed may predict that chickens should have higher rates than zebra finches,

contrary to our results. MHC class I pseudogenes, of which Balakrishnan et al. (2010)

found several, are likely dispersed on multiple chromosomesin zebra finch (Balakrishnan

et al., 2010; Ekblom et al., 2011). Thus chromosome position cannot yet inform our

understanding of rates of evolution in songbird class I genes.

A more general explanation of higher intensities of selection in songbird MHC class

I genes may lie in their larger effective population sizes. The ease with which balancing

selection will act on MHC genes, without the negating effect of genetic drift, will depend

on the effective population size (Takahata, 1990). Larger effective population sizes will

allow for positive or balancing selection to act with greater efficiency than smaller effective

population sizes; the opposite trend is expected when selection is largely stabilizing or

purifying (Welch, Bininda-Emonds & Bromham, 2008). Due to their smaller body sizes

and shorter generation times, passerines almost certainly have a higher average effective

population size than do non-passerines. Ultimately the covariance among all these

variables may make it challenging to determine ultimate causes of stronger selection in

passerines at MHC class I genes.

The base composition of genes and lineages is an important window in to evolutionary

dynamics and can vary among lineages for a variety of genomic and life-history causes

(Nam et al., 2010; Nabholz et al., 2011; Romiguier et al., 2010; Romiguier et al., 2013;

Backström et al., 2013). Higher GC content in particular lineages of mammals has been

associated with lower body mass and smaller genome size (Romiguier et al., 2010). This

relationship would predict higher GC content in songbirds than in non-passerines,

a prediction recently confirmed by Backström et al. (2013) but opposite to what we
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found here. Higher GC content in specific genes or chromosomal regions can also

be an indicator of increased rates of biased-gene conversion (BGC), a neutral process

across much of the genome that can ultimately convert T-A base pairs to C-G base pairs

(Duret & Galtier, 2009; Romiguier et al., 2010). In avian and other MHC genes, gene

conversion and recombination have long been known to diversify the PBR regions (Hess

& Edwards, 2002; Spurgin et al., 2011). The weakly higher GC content in the 3rd positions

of codons of non-passerine class I genes that we detected here could suggest higher rates

of gene conversion in non-passerines. This trend would be somewhat at odds with the

higher rates of adaptive evolution observed in songbirds, in so far as gene conversion is

thought to be an important source of nonsynonymous mutations in avian MHC genes

(Hosomichi et al., 2008). In fact, the lower GC content of 3rd positions that we found

here contradicts a genome-wide trend for avian genes in which songbirds typically exhibit

higher GC content than do non-passerines (although this trend has not been examined

in large numbers of species; Nabholz et al., 2011; Backström et al., 2013). The degree

of significance of the higher GC content in 3rd positions of non-passerine class I genes

depended on the model used; in standard non-phylogenetic terms, the distinction is highly

significant, whereas under a comparative method tailored for continuous phenotypic data,

the significance is model-dependent. The study of base compositional variation in avian

genes is still in its infancy and the particular base composition of an individual gene may

reflect the local rate of recombination in the region of the genome, or it may represent a

stochastic effect. Further work in this area is needed.

Our analysis suggested that the significance of the difference in GC3 between songbirds

and non-passerines depends on the length of the branch leading to songbirds. This branch

length will vary depending on the gene or genomic region analyzed, and will also vary

depending on the pattern of evolution displayed by the trait being analyzed, since branch

lengths in the phylogeny affect the pattern of covariance among species that is consistent

with a Brownian motion model (Harvey & Pagel, 1991; Garland, Bennett & Rezende, 2005).

The analysis of continuous traits such as base composition in birds will depend on a variety

of factors influencing the phylogeny and branch lengths of the species being analyzed.

As we enter the era of large-scale comparative studies in birds, attention to these diverse

factors will enable maximal resolution of evolutionary dynamics.

CONCLUSION
The main purpose of this study was testing the capability of a newly designed pair of

primers to cross-amplify multiple and evolutionarily relevant MHC loci across a broad

spectrum of taxa. The order Passeriformes contains thousands of species. Thus, we believe

the rapid diffusion of the primers presented here represents a significant advance for the

investigation of MHC variation across a widely diverse group of birds. That said, future

studies must investigate in more depth patterns of MHC class I variation within each

particular taxa, including the estimation of the minimum number of putatively functional

genes, pseudogenes and the extent of genetic variation and level of expression within

different loci. Our primers appear to target polymorphic and functional MHC class I
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genes, a conclusion also supported by differences in the set of alleles isolated in two house

finches and two Eastern Bluebirds. Additionally, the primers amplify almost the entire

coding sequence of exon 3 (only excluding the four first codons, which seem to be largely

conserved among songbirds), a fragment that is somewhat longer than that typically

amplified in MHC class I studies in birds. We expect these primers to facilitate further work

on MHC class I genes of songbirds, for both ecological and molecular evolutionary studies.
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